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ABSTRACT

A “higher-order” liability regime—in which a plaintiff and a defendant have a sequence of alternating
options to take (or to put) a disputed entitlement —can enhance allocative efficiency by harnessing the
private information possessed by both litigants. Indeed, infinite order liability regimes can, as a theoretical
matter, assure first-best efficiency. Such iterated taking regimes have, however, been criticized as (i)
generating excessive (and debilitating) taking costs, and (ii) being infeasible with regard to intangible
entitlements. This Paper shows that courts can replicate the first-best efficiency of infinite-stage liability rule
via an instantaneous auction mechanism. This instantaneous mechanism avoids the excessive taking cost
criticism (because the disputants merely submit a single report of value). Unlike many auctions, the
mechanism also allows courts to pursue equitable goals by dividing the bulk of expected gains to either
plaintiff or defendant (without undermining the first-best allocative efficiency). A derivation is givenofthe
explicit formula for the basic element of the procedure, which we call the “damage curve” and which
determines the amount of damages that the winner of the auction must pay the loser. This formula holds
for arbitrary joint probability distributions of'the valuations ofthe asset, whether correlated or uncorrelated.
Explicit damage curves are calculated for several concrete examples, illustrating both correlated and
uncorrelated cases.

L. Introduction
Kaplow and Shavell*—formalizing Calabresi and Melamed®—showed that “liability rules” can

harness the private information of a potential taker to enhance allocative efficiency. For example, when

'Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana,
Illinois 61801-3080.

2PMG gratefully acknowledges the hospitality of the University of Colorado at Boulder, where a portion of
this work was done.

3Yale Law School, 127 Wall Street, New Haven, Connecticut 06520.

*Louis Kaplow and Steven Shavell, Property Rules Versus Liability Rules: An Economic Analysis, 109
Harv. L. Rev. 713 (1996).

>Guido Calabresi and Douglas Melamed, Property Rules, Liability Rules, and Inalienability: One View of
the Cathedral, 85 Harv. L. Rev. 1089 (1972).



nuisance damages are set at the expected value of the pollutee (takee) a potential polluter (taker) will be
induced to take only if she expects that the taking would enhance efficiency.

But while simple liability rules can do a better job at economizing on the private information of
potential takers than property rules can, Ayres and Balkin® pointed out that they fail to harness the private
information of the other side of the dispute. Ayres and Goldbart’showed that giving the disputants a
sequence of alternating options to take a disputed entitlement at successively increasing court ordered
damages could even better enhance allocative efficiency by harnessing the private information of both
parties. These “higher order” liability rules resembled an auction in which each successive taking amounted
to a bid signaling a higher private value. And indeed, a potentially infinite sequence of takings could, in
theory, just like a traditional auction, produce first-best allocative efficiency—with the disputed entitlement
always being allocated to the higher valuer.

But, unlike traditional auctions, where the winning bidder pays a third party (the seller), this regime
represented an internal auction, in which the winning bidder paid the losing bidder. Ayres and Goldbart®
showed how this internal auction feature enhanced the distributional flexibility of courts to respect the
equitable claims of the polutee or the polluter (or enhance ex ante investment incentives). Indeed, it is
possible to construct a higher-order liability rule so as to maintain first-best allocative efficiency and divide

the expected value of the entitlement between the disputants as the court sees fit.

®I. Ayres and J.M. Balkin, Legal Entitlements as Auctions: Property Rules, Liability Rules, and Beyond,
106 Yale L.J. 703, 729-33 (1996).

’I. Ayres and P.M. Goldbart, Optimal Delegation and Decoupling in the Design of Liability Rules, 100
Mich. L. Rev., 1-79 (2001).

8See supra note 7.



While infinite staged higher-order liabilityrules thus have attractive theoretical properties, they have
been criticized as being impractical. Kaplow and Shavell’ point out that iterated taking regimes might (i)
generate excessive (and debilitating) taking costs and (i) be infeasible with regard to intangible
entitlements.'”

The present article advances the ball by showing that it is possible to implement an infinitestage
liability rule with an instantaneous procedure — where litigants make a single report of their valuation to the
court — that avoids the takings problems identified by Kaplow and Shavell. Our procedure achieves
first-best efficiency in a model without any possibility of consensual trade. Ours is a direct mechanism in
which the disputants are asked to report how much they value the entitlement to the court, with knowledge
that the court will (i) allocate the entitlement to the disputant submitting the higher report and (ii) assess
damages according to a pre-specified damage curve (that is a function of both disputant's reports).

We show that there exists an equilibrium in which disputants report their true values and the
entitlement is accordingly allocated by the court to the first-best valuer. We present a derivation of the
explicit formula for the core feature of the procedure, what we call the “damage curve”, which determines
the amount of damages that the winner of the auction must pay the loser. This formula holds for arbitrary
joint probability distributions of the valuations of the asset, whether correlated or uncorrelated. We
calculate explicit damage curves for several concrete (correlated and uncorrelated) examples.

There are of course other auctionmechanisms that could also achieve first-best allocative efficiency.

°See supra note 4.
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For example, the government could (i) exercise its eminent domain option over the disputed entitlement
(paying the ex ante expected value of the entitlement to one of the disputants), and then (ii) auction the
entitlement to the highest bidder (with the government keeping the revenues of the auction). But unlike this
two step process (where the government first takes then auctions), our paper shows that it is possible to
harness the private information of the litigants in a one-shot internal auction (in which the winner
compensates the loser). Moreover, the government knows more about the value of the entitlement at the
end of the auction than at the beginning, because the very process of bidding reveals information about the
disputants' private valuations. Accordingly, an advantage of our proposal over other auction mechanisms
is that it allows more nuanced divisions of the entitlement's ultimate value between the disputants.''
A. Review of higher-order liability rules

Once scholars noticed that traditionally liability rules implicitly grant a call option to one of the
litigants, it become natural to ask whether this option entitlement should itself be protected by a property
or a liability rule. After one party exercises its option to take nonconsensually, should the other have an
option to "take back"? Almost all analyses of liability rules have implicitly assumed that the law deters the
initial entitlement holder from taking back after an initial nonconsensual taking. For example, if a liability
rule regime gives Calabresi an option to take some entitlement of Melamed for $100, most analysts assume
that after this taking, Melamed (and others) would not have a viable option to take the entitlement back
from Calabresi. In other words, most people have assumed that liability rules are protected by property

rules.

"However, a still unresolved question is whether these higher-order mechanisms dominate a host of other
mechanisms that have recently been proposed to enhance efficiency. See, e.g., Richard R.W. Brooks, Simple Rules
for Simple Courts (working paper 2003).



Kaplow and Shavell were right to see that liability rules harness the taker's private information.
But traditional liability rules do nothing to harness the private information ofthe takee. Giving the original
entitlement holder a take-back option can result in second-order takings that produce even greater
efficiency, because they better economize on both parties' private information. Protecting a liability rule
optionwitha liability rule can be more efficient than the traditional (single-chooser) liability rule without such
a take-back option.

As a matter of nomenclature, we will refer to the traditional (single-chooser) liability rule of
Calabresiand Melamed as a "first-order" rule because it contemplates at most one nonconsensual taking.
And by analogy, we will call a regime where the entitlement holder has a take-back option a "second-
order" liability rule, because this rule presumes the possibility of two nonconsensual takings. Under a
second-order liability regime, a potential polluter would have anoptionto pay the original entitlement owner
a predetermined sum for the right to pollute. However, before pollution began, the original owner would
then have the option to pay the polluter an even larger sum to maintain the status quo ante. In a second-
order liability regime, once the original owner had exercised her take-back option, property rule protection
would henceforth deter the polluter from polluting.

Of course, we need not stop with second-order takings. It is theoretically possible to consider
third- or higher-order liability rules involving a longer series of reciprocal taking options. Higher-order
liability rules (with multiple taking options) canimplement an efficient auction—where each taking represents

a "bid" signaling a higher valuation. Auctions can be structured with a variety of rules,'? but for present

12 Auctions can be implemented with either sealed bidding or open-call bidding, and open-call bidding can
be accomplished with either ascending bids (as in so-called “English” auctions) or with descending bids (as in so-
called “Dutch” auctions). In “second-price auctions,” winning bidders sometimes must only pay the second-highest
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purposes it will be particularly useful to focus on two aspects of auction design: the size of the minimum
(ascending) bid increments, and the rules for distribution of proceeds.'?
1. Internal auctions and examples of higher-order regimes

In the most familiar auction situation, winning bidders paya third party (i.e., the seller), and not each
other, but this is not a necessary rule for distributing the proceeds of an auction.'* But reciprocal taking
option regimes, where the winning "bidder" pays the losing "bidder," can produce the same allocational
result as a traditional auction with minimum bid increments. Higher-order liability rules represent a kind of
"internal" auction in which the auction proceeds are distributed internally among the auction bidders.'> An
arbitrarily larger number of reciprocal taking options will produce an internal auction with an arbitrarily
small bid increment--which in the limiting case produces first-best efficiency.

This auction reinterpretation reveals that liability and property rules are also specialcases of a larger
family of truncated auctions. Traditional(first-order) liabilityrules are one-round auctions where we expect
at most one bid. We caneven think of property rules as zero-round auctions, because the law deliberately

sets the initial exercise price above the highest valuation expected of all potential takers. A property rule

bid, instead of what they bid themselves. See id. at 230(describing auction variants).

BOne might think that another important consideration would be the number of possible rounds. In the
examples we consider here, however, the parties’ maximum valuation of the entitlement is already known. Hence, the
number of possible rounds is largely dictated by the size of the bidding increments.

“For example, in a popular class exercise, a professor offers to auction a $10 bill to the highest bidder—with
the important catch that both the first-and second-highest bidders are required to pay. Once the bidding hits $10,
the second-highest bidder suddenly realizes that it is better to bid $11 to win the auction (and thereby lose $1) than
to come in second and lost $9. For a real world example of this “war of attrition” auction, see lan Ayres & Peter
Cramton, Pursing Deficit Reduction Through Diversity: How Aflitigantative Action at the FCC Increased
Competition, 48 STAN. L. REV. 761 (1996).

1SWe distinguish this from the more familiar situation of an “external auction,” where the parties bid for an
entitlement owned by another and the winner pays the owner for it.
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is an auction in which the minimum initial bid is simply set too high.'¢

The more rounds we add to an internal auction, the more it appears to mimic Coasean bargaining
between the participants. Although the allocative efficiencyof'the internal auction produced by higher-order
liability rules resembles the allocative efficiency of Coasean bargaining, the mechanisms differ in three
important ways.

First, internal auctions can be more efficient precisely because bargaining between individuals is not
always practical. Lack of information and other transaction costs may prevent efficient bargains from being
struck. The great advantage of auctions over unstructured bargaining lies in the way that they set clear
choices and structure responses. In this fashion they compensate for the imperfections that block efficient

negotiation. '’

Higher-order liability rules can force the parties to reveal information about their valuations
and help produce results closer in efficiency to those that might have been achieved through bargaining with

full information and under ideal conditions.

1%0r, to put it another way, a property rule is like an auction at Sotheby’s where the owner really does not
want to part with the painting, and thus requires an exceptionally high opening bid. In real life, the auction house
will advise (or require) that the initial bid be set lower, because it wants to move merchandise and collect a
percentage of the bid. But in this respect the legal system differs from the owner of an auction house; it may have
good reasons to respect the desire of the owner not to surrender the chattel except consensually and at the owner’s
asking price. See infra text accompanying notes 36-38; Part VI.

The possibility of inefficient bargaining is dramatized by what economists call bilateral monopoly:

Bilateral monopolies, which arise when two parties are locked into dealing with each other. . . can give

rise to high negotiation costs that foreclose efficient transfers. Because there is no competitive

pressure from outsiders, each party is likely to bargain “strategically”—asking much, offering little,

bluffing, threatening to walk away from the deal—in an effort to get as much as possible. . . .

“[Blilateral monopoly is a social problem, because the transaction costs incurred by each party in an

effort to engross as much of the profit of the transaction as possible are a social waste. They alter the

relative wealth of the parties but do to increase the aggregate wealth of society. A major thrust of the

common law . . . is to mitigate bilateral-monopoly problems.”

Jessie Dukeminier & James E. Krier, PROPERTY 137 n. 17 (3d ed. 1993)(quoting Richard A. Posner,
ECONOMIC ANALYSIS OF LAW 62 (4™ ed. 1992)). Higher-order liability rules may be able to mitigate bilateral monopoly
problems in settings that otherwise seem to have low transaction costs.
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Second, bargaining between individuals in a property rule regime is consensual, but internal
auctions are not. In face-to-face bargaining, the parties do not have to transfer their entitlements unless they
agree to do so. However, under a higher-order liability regime, the entitlement holder might have her
entitlement taken at any time without her consent. The taker, in turn, can have the entitlement retaken
without her consent, and so on. In a truly consensual arrangement, parties can simply refuse to deal if they
do not want to part with their existing entitlements. However, once an internal auction is set in motion by
a party's nonconsensual taking, the takee may not be able to bargain her way out ofthe process. She may
not be able to keep her entitlement unless she retakes.'® Thus, higher-order liability rules can produce
greater efficiency precisely in those cases where Coasean bargaining under ideal conditions is impractical.

Third, the internal (revenue sharing) aspect of this auction mechanism leads litigants to be less
guarded in revealing their true valuation. William Samuelson has proven that there is no bargaining (or non-
bargaining) mechanism that will induce allocative efficiency when the disputants have private information
about their values and the entitlement protected by a property rule is assigned exclusively to one side."”
But higher-order liability rules because of this internal revenue sharing divide the claims to the entitlement

between the two litigants and thus offer the potential of producing first-best allocative efficiency.*

181n this respect, an internal auction differs from the familiar "highest bidder" auction that culminates in a
consensual trade between the highest bidder and a third party. In these traditional auctions, participation is
consensual in the sense that one does not have to bid; only those who participate and win pay proceeds to a third
party, producing a result similar to a bargain freely entered into between them. But this case forms only a small class
of possible regimes. For example, in third party auctions where the penultimate bidder must also pay, the parties may
not be able to walk away so easily once the bidding starts.

YWilliam Samuelson, Bargaining Under Asymmetric Information, 52 ECONOMETRICA 995 (1984).
2Chapter 2 showed how first-order options divided the entitlement between the litigants. See supra at 23.
See Peter Cramton et al., Dissolving a Partnership Efficiently, 55 ECONOMETRICA 615 (1987) (showing how divided

claims to a partnership might lead to first best bargaining) and Ayres & Talley I, supra note 30 (showing how
divided claims to entitlements more generally might enhance allocative efficiency in bargaining).
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Notions of higher-order liability rules with reciprocal taking options will strike many readers as
strange and unworldly. To give these abstract notions a slightly more human face (and especially before
proceeding to introduce some rather intimidating formulas), we pause briefly to provide two examples of
second-order liability rules. The first is an existing common law rule, and the second is a proposal for a
modification of a common law rule made several years back by one of the titans of property law, Robert
Ellickson.

A good example of a second-order liability rule in the common law is the incomplete privilege of
private necessity available in cases of intentional tort.?! In the famous case of Vincent v. Lake Erie
Transportation Co.,** the Minnesota Supreme Court used the doctrine of incomplete privilege to hold a
shipowner liable when his ship damaged a dock while he attempted to moor the ship during a storm.** Yet
the court simultaneously acknowledged that the dock owner would have had to pay damages to the
defendant if the dock owner had subsequently unmoored the defendant's ship, causing it to be damaged.
Vincent's discussion of Ploof v. Putnam makes clear that the shipowner's option to take can itself be

retaken if damages are paid:

2lUnder the privilege of necessity, a defendant is permitted to commit an intentional tort to another's rights
in property or realty to protect a more valuable interest in property or an interest in bodily security or life. See
RESTATEMENT (SECOND) OF TORTS §§ 262, 263 & cmt. d (1965). Where the more valuable interest belongs to a large
number of persons, for example, where a city must be saved from a fire, the privilege is one of public necessity, and
the defendant owes no compensation. See id. § 262 & cmt. d. However, where the more valuable interest belongs
only to the defendant or a small number of persons, the privilege is classified as a case of private necessity, and the
defendant must still compensate the plaintiff for the harm caused by the invasion. See id. § 263(2) & cmt. e. Because
compensation is owed, the privilege is said to be incomplete. However, because the defendant has a privilege, the
plaintiff must pay for the damages caused by any self-help she undertakes to avoid the taking. See id. § 263 cmt. b;
see also Ploof v. Putnam, 71 A. 188 (Vt. 1908).

2124 N.W. 221 (Minn. 1910).

BSee id. at 222.



In Ploof v. Putnam... the Supreme Court of Vermont held that where, under stress of

weather, a vessel was without permission moored to a private dock at an island in Lake

Champlain owned by the defendant, the plaintiff was not guilty of trespass, and that the

defendant was responsible in damages because his representative upon the island

unmoored the vessel, permitting it to drift upon the shore, with resultant injuries to it. If, in

that case, the vessel had been permitted to remain, and the dock had suffered an injury,

we believe the shipowner would have been held liable for the injury done.?*

The shipowner's option—a liability rule—is itself protected by a liability rule.

Jon Hanson and Matt Stowe have identified Vincent as a vivid example of how the common law
protects an option to take an entitlement (a liability rule) with another liability rule.> The dock owner holds
the initial entitlement to the physical security of the dock. The shipowner (because ofthe exigencies of the
storm) has a first-stage option to "take" the dock by mooring the ship to it and by paying damages for any
injury that results. The dock owner has a second-stage option to unmoor the ship, but at a cost: The dock
owner gives up a cause of action against the shipowner for damages and exposes himself'to tort liability for
any resulting damages to the ship and its crew. Exercising this second-stage option imposes on the dock
owner a direct cost (potential tort liability) and an opportunity cost (potential tort damages).*®

Our second example comes from Robert Ellickson. In the early 1970s, Ellickson proposed a

modification of nuisance rules that would amount to a second-order liability rule, and this chapter has in

XVincent, 124 N.W. at 222. The dock owner’s second-order option may have been limited. It might be that
a Johnny-on-the-spot shipowner could have obtained an injunction to prevent the dock owner from unmooring the
ship. But while the discussion in Vincent is dicta, there is no suggestion that the dock owner would have had to pay
punitive damages for unmooring the ship. If a court is more likely to protect the shipowner’s entitlement with an ex
ante injunction, it would be more likely to deter takings with exemplary damages ex post any such bad faith
unmooring.

ZHanson and Stowe refer to the Vincent standard as a "two-sided" liability rule. Jon Hanson & Matt Stowe,
Lecture Notes, Torts, Harvard Law School (Fall 1996) (on file with the Yale L. J.).

2%We emphasize this dual cost because readers are likely to imagine that the total cost of the dock owner's

action is the payment of damages. It is important to account for these opportunity costs—foregoing damages created
by the other party's previous taking—if we wish to understand how much exercising an option really costs an actor.
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large part been inspired by his analysis.?’ Ellickson argued that when a landowner committed an intentional
nuisance or other unneighborly activities, the landowner would be liable for damages, but that other parties
could enjoin continuation of the activity ifthey were willing to compensate the landowner for any losses he

28 Under Ellickson's proposed regime, the defendant (polluter) decides

suffered from that injunction.
whether to purchase the right to pollute, and the plaintiff (pollutee) then decides whether to purchase an

injunction to stop the pollution.*

2. Formalizing a sequence of call or put options: defining a higher-order rule regime

?7See Robert C. Ellickson, Alternatives to Zoning: Covenants, Nuisance Rules, and Fines as Land Use
Controls, 40 U. CHL L. REV. 681 (1973). In fact, Ellickson, Hanson, and Stowe, toourknowledge, are the only people
who have seriously analyzed the potential utility of higher-order liability rules. In 1980, Mitch Polinsky saw that the
law could give both polluters and pollutees a liability option to change the initial amount of legally permissible
pollution. See A. Mitchell Polinsky, Resolving Nuisance Disputes: The Simple Economics of Injunctive and Damage
Remedies, 32 STAN. L. REV. 1075, 1086-88 (1980). Polinsky opined that this type of regime "has not to our knowledge
been considered by legal commentators or the courts. Since this remedy turns out to be unhelpful in most of the
situations examined in this article, we will hereafter ignore it." /d. While Polinsky's article included a pathbreaking
analysis of first-order liability rules, he never addressed the sequence in which second-order taking options might be
exercised. See also Morris, supra note 45, at 822, 891-93 (recognizing possible usefulness of second-order liability
rules, but not pursuing the question of when these rules might be efficient).

BSee Ellickson, supra note 241, at 748. Ellickson described this proposal as a combination of two different
types of entitlement regimes originally offered by Calabresi and Melamed. See id. at 738. Calabresi and Melamed's
"Rule 2" gives the polluter an option to pollute and pay damages, while their "Rule 4" gives the pollutee an option to
enjoin pollution by paying damages to the polluter. See Calabresi & Melamed, supra note 19, at 1115-24.

®In contrast, the "purchased injunction" featured in the famous case of Spur Industries v. Del E. Webb
Development Co., 494 P.2d 700 (Ariz. 1972), represents a first-order liability rule. The polluter, in this case the owner
of a feed lot, has the original entitlement to pollute. However, this entitlement is only protected by a liability rule. The
neighbors have the option to stop pollution by paying damages and purchasing an injunction. Their taking is then
protected by a property rule in the form of that injunction. See id. at 705-08.

A mortgagor's right of redemption provides yet another example of a second-order rule. Statutes in roughly
half of the states give a mortgagor the option to buy back property afier a foreclosure sale, by paying the
foreclosure sale purchaser the foreclosure sale price. See Michael H. Schill, An Economic Analysis of Mortgage or
Protection Laws, 77 VA. L. REV. 489, 495 (1991). The foreclosure sale is often an explicit auction—harnessing the
private information of third parties—which allows a nonconsensual taking of the property from the mortgagor. See id.
at 493. The statutory right of redemption, however, gives the mortgagor a take-back option, which allows the
mortgagor to signal a higher (or equivalent) valuation of the property. The right of redemption might be viewed as a
way to harness public and private information about the property's value, especially if temporary illiquidity prevents
a mortgagor from signaling a high valuation at the time of the foreclosure sale.
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This section describes and generalizes the notion of higher-order liability rules—which represent
a sequence of alternating taking options (iterated call rules) or alternating giving options (iterated put rules).

Iterated Call: Imagine that one of the disputants (without loss of generality) called “plaintiff” gets

the initial entitlement. In the first stage, the defendant gets the initial option of buying the asset for D, . The
plaintiff gets the option of preventing this transfer by paying D ;. In the second stage, the defendant has

the option of responding by increasing his bid to D ;, in response to which the plaintiff can again prevent

transfer by increasing his offer to D 2. This process continues for up to n stages, the n-stage game being

fully described by the two sequences of damages:

DY e 1 o INEY

Dhoe DR oo i AN

Iterated Put: An alternative higher-order liability rule entails a potential sequence of being given

put options. Again imagine that the plaintiff get the initial entitlement. The plaintiff also gets the initial option

to forcefully transfer the asset to the defendant and to receive damages Drll . The defendant can prevent
transfer by paying D, . In response, the plaintiff can lower the damages he is to receive to D}, and the
defendant can, in turn, prevent transfer by paying Di . The n-stage game is fully described by the two

sequences of damages

Dl e D e T (1.2a)
DL ey e anm (1.2h)
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Ayres and Goldbart showed that higher order rules could, by haressing the private information of both
litigants, produce first-best allocative efficiency. We now turn to the main focuses of the present Paper,
viz., the development of instantaneous rules — that mimic the information harnessing of higher order rules

without incurring the transaction costs of multiple takings.

II. Extension to continuous rules
The purpose of'this section is to show that a larger family of liability rules exists that (a) containing
the higher order rules of the previous sectionas simple special cases, and (b) are capable of achieving the
same, first-best efficiency. In addition to formulating these rules, we shall explore a number of illustrative
examples. In the following section we shall examine the new rules from a game-theoretic perspective; and
in the concluding section of the Paper, we shall, among other things, draw analogies between these new

rules and the familiar topic of auctions.

A. Continuous call rule

Letus examine more closely the iterated call rule. It will prove convenient to make a slight change
of language here. We wish to refer to the exercising of an option as the making of a bid, and to the
corresponding damages as the amount of the bid. Two factors distinguish this notion of bidding from the
conventional one. First, the permitted bid amounts are drawn froma discrete set, whichis specified by the
court. And second, whereas in conventional bidding any bid must exceed the opponent's previous bid, in
the present setting a litigant's bid must exceed only his own previous one. Stated mathematically, the set

of interlaced conditions
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(T M I 1 S e o R S (T1.1)

is replaced by the two separate sets of conditions:*°

Us Dy < T < oo DB, (1T.2a)
(e R s R L (11.21)

Let us now make a natural generalization of this scheme. We take the limit # — o, so that the

increments of the bid amounts, {D; - Ditand {D!"'- D!} become infinitesimal quantities. It is

convenient (and always possible) to view the damages {Dg} and {Dﬁ} as the values of a pair of
continuous damages functions D (s) and D, (s) , evaluated at the arguments {s* = (k-1n}.In

order to meet the conditions that the pair ofdiscrete sequences of damages {D];} and {D%} each be

strictly monotonically increasing, we shall require that the derivatives of the damages functions obey

D! (s)> 0,and D) (s)> 0, where the prime indicates a derivative.

As another slight change of language, we shall refer to the arguments of the damages functions {s*}

as the bids, rather than the actual values ofthe damages functions at these arguments. We shall refer to the

latter as bid amounts. As, in the continuous (i.e. 7 — oo ) limit, the bid increments sk

s*(= 1/ n) tend to zero, the bids are drawn from the continuous interval[0; 1). The convenience of this

3OWe simply rewrite Eqs. (I.la) and (LLib).
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focus on the bids s [rather than the bid amounts D, (is) and D, ()] lies in the intuitiveness of the notion

that it is the highest bid that wins (i.e. ends up with the asset). To emphasize this point, consider a situation

inwhicha plamtiffand a defendant respectively make bids sp; and s, , with s;; > 5, . Thenthe plaintiff's

bid is the winning bid , even though it perfectly well may happen that Dp; (s) < D, (s,) .

In setting up the continuum generalization of the iterated call rule, we shall be introducing three

conceptual steps. First, we propose that the procedure inwhichthe explicit bids and counter-bids are made

is replaced by one in which the bids (still drawn from the discrete set {Sk }) are announced by the court.

Second, noting that bid increments tend to zero, we may assume that the current bid, represented by the
number s, increases from zero to one, continuously with time. Third, we entirely eliminate the explicit
bidding involved, by requiring the parties simply to secretly submit their final bids to the court.

In the scheme that follows from making the first step, the bids are announced sequentially, one by
one, starting withthe smallest bid of zero. At each step, there are three possible outcomes: (1) the defendant

folds [i.e. allows the plaintiff to control the asset in exchange for the previously announced damages

k-1
Dy (s )] 31+ (ii) the defendant stays but the plaintiff folds [i.e. allows the defendant to control the asset
in exchange for the damages D, (s*)]; (iii) both defendant and plaintiffstay [i.c. that, to control the asset,

the defendant is willing to pay the bid amount 1, (Sk) and the plaintiff is willing to pay the bid amount

3'We may take Dl'[ (S ° ) =0 , which means that the asset simply stays with the plaintiff if the defendant

chooses not to exercise his first option.
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D (s k )], in which case the next bid is announced. Ifeither (i) or (ii) is realized then the procedure stops,

the asset is transferred accordingly, and the appropriate damages are paid.

Upon making the second step, in which we imagine letting the bid rise from zero to one,
continuously in time, the litigants need only to indicate, at some time, their desire to fold. In the (unlikely)
event of the litigants folding simultaneously, priority is given to the defendant (i.e. the defendant is taken to
be the party who has folded first).

In the third, and final, step we observe that neither party has received any useful information until
the bidding ends with one or other party being the winner. Thus, the parties know their maximum bids
before bidding has commenced. And, thus, the entire bidding procedure can be dispensed with in favor of
a procedure in which the parties simply furnish the court with their maximum bids. The court can use this
information to immediately ascertain which party is the winner, as well as the amount of the winning bid.*

The bidding stops when s reaches the smaller of the two secretbids, s, and s, . Therefore, the party that

made the highest bid is the winner. The damages are determined, however, by the loser's bid, as this is the
bid at which the bidding stops.
It remains to mention that the restriction that s lie in the interval [0; 1) is quite arbitrary: the essentials of the

problem are invariant with respect to arbitrary reparametrization. That is, for any monotonically increasing

function of s, say (s), one equivalently can work with functions Dy () = Dy (¢(s)) and

32A popular web auction eBay (tm) has a system called proxy bidding, which lets users indicate their
maximum bid (which is kept private), and simulates the bidding process by bidding incrementally on behalf of each
user up to his maximum bid.
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BA ()= D,(t(s)). In the resulting scheme, the players should choose their bids to be #;; = #(sy;)

and ¢, = #(s,), where s, and s, would be their bids under the old scheme. As #(s) is monotonically

increasing, the winner remains the same; the amount of damages paid, as determined by the lower bid,

would similarly be unchanged. If one takes, for instance, #(s) = ¢/)/ - t), the domain of damages

functions would be mapped from the interval [0; 1) into the entire positive real axis [0; + o0 ).

The final version of the bidding procedure admits an appealing geometric interpretation, which we

now explain. The damages functions Dy, ('s) and D, (is) define, parametrically, a curve inthe (Dy;, D, )

plane (see figure 1). The positivity of D/, (is) and D, (is) implies that the tangent to the curve always

points towards the positive quadrant (i.e. angles from 0° to 90°). The bids correspond to points on this
curve, the higher bid being the point lying further along the curve (in the direction of increasing damages).

The damages are determined by projecting the point for the losing bid on to the D), axis (if the plaintiff

is the winner) or on to the D, axis (if the defendant is the winner). This geometric reinterpretation

illuminates the reparametrization freedom: the pairs {DH (s), D, (S)} and { 5n (1), 5A (t)} define the

Same Curve.
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I

Fig. 1. An example of the parametricallv defined hidding corve. The damages paid are alitained
by prejecting the lower bid cota - or A-axis.
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B. Continuous put rule

We now examine the continuous put rule. Recall that the iterated put is characterized by the sets
of damages D111 > D121 >-+> Dy and Di < Di <---< Dy.% We proceed to define damages
functions Dy (s) and D, (s) that satisty Dy (s*) = - DY and Dj (s") = D} This definition may
seem peculiar, however it represents the fact that whoever ends up with the asset pays damages D (),
where o stands for either I or A . Indeed, if the plaintiff exercises his option, the defendant (A ) ends

up with the asset and pays DII; =D, (s*) . If the defendant exercises his put-back option, the plaintiff
receives the asset and Df in damages (or, equivalently, pays the negative amount — Df = Dy (Sk ) in

damages). For the continuous put rule we prefer to define sk = (n-1- k) /n so that one still has

D[, (s) > O0and Dj (i) > 0, but now, during the bidding, s decreases from 1 to 0. We now consider

the last (and somewhat tricky step: in contrast to the continuous put case, the asset ends up in the hands
of the party who refused to continue the bidding, i.e., did not exercise his put option.

In constructing the generalized continuous put rule, we again make three revisions of the bidding
game. In the first revision, the bids are announced by the court, and the litigants announce whether they are
willingto exercise their put options. Should one of them refuse, he becomes the owner of the asset and pays
damages determined by the current bid. If both refuse, priority is given to the initial asset holder (the

plaintiff). The second revision lets the bid decrease continuously from 1 to 0, until one of the litigants

33ee Egs. (1.2a) and (1.2b).
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announces his intention to take the asset. The damages are determined by the current bid. In the final
revision, the litigants submit their secret taking bids. The court then assigns the asset to the party with the
higher bid. The damages are determined by the winning bid, unlike the situation in continuous call rule, in
which the losing bid is used to calculate the damages. The difference between the continuous call and the
continuous put rules is that the former favors strategic overbidding whereas the latter favors strategic
underbidding. The continuous put also admits a geometric interpretation: the winning bid (the point further

along the curve determines the winner, and its projection onto either the D, or the D, axis determines

the damages

C. Determining optimal strategies
The model that we consider throughout the Paper is the familiar one in which the plaintiff and defendant

each possess an element of private information —the value that they place ona right (or asset, as we shall

commonly refer to it) thatis under dispute. These private valuations are denoted V;and V, for the plaintiff

and defendant, respectively; we assume that they are random variables** distributed according to a joint

probability distribution (j.p.d.) which we denote f (V,V, ). This distribution is assumed to be public

3*This assumption should not be taken too literally. It simply means that the public has incomplete
information, and that a probability distribution is being used to represent their beliefs.
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knowledge:> it is known to the plaintiff, to the defendant, and to the court. We shall say that the private

valuations are uncorrelated if the j.p.d. is factorizable, ie., if f(V,V,)= fr(Vo)f (VL))

Otherwise, we shall say that the private valuations are correlated.

For the correlated case, we shall also make use of the conditional probability densities:
FaWalVa = fa) o (7)) and simitaty for £, (Vi [V) -

1. Continuous call rule

In the present section we assume that s and s, are, respectively, the bids submitted by the

plaintiff and the defendant (referred to in this section as the players I1 and A . In addition to conditional

probability distributions f1; (Vg |VA ) and f, (V, |VH ), we shall make use of cumulative distributions,

denoted by symbol F, e.g.,

FalVa Vo = ! Fale| Vil do. (IL.3)
A1

Now, each player is faced with the problem of making the optimal bid, given his private valuation
of the asset. In doing so, he must have some knowledge of other player's intentions, i.e., other player's

strategy. Therefore, we should end up with a pair of coupled equations for the strategies. Also note that

35This is what is often meant by first-order beliefs. More precisely, first-order beliefs correspond to the
uncorrelated case, i.e. fn and fa (V) being separately known. The correlated j.p.d. cannot be described by
first-order beliefs alone due to the fact that e.g. defendant's belief about the distribution of plaintiff's valuations
depends on his own valuation, and, therefore is not known to others. The correlated example is the simplest one to
go beyond first-order beliefs; and yet it renders calculations analytically tractable.
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in contrast to games withcomplete information, in which the strategy is essentially a number (the actual bid),
under incomplete information the strategy should be defined as a function that maps players’ internal

valuations into bids: s, (V) and s, (V) .*® We shall, in fact, work with the inverses of these functions,

viz, Vi(s) and V,(s).” We shall also use the latter to define the distributions

F($)= [y (Vi ()W (s)and £, (s) = £, (V,(5))V, () whichare thenthe probability distibutions

of the actual bids. We also define the corresponding conditional probability distributions ﬁn (s ‘VA ) and

7 . (s]V,) and their cumulative versions, ﬁn (S‘VA ) and ﬁ'A (S‘ Vq)-

If II’s internal valuation is Vy, his bid si; (V) is determined so as to maximize his payoff. In this

maximization he assumes that A follows his optimal strategy s, (¥, ) . As II does not know A’s private

valuation J/, , he maximizes his expected payoff under the condition that J/, is randomly distributed
according to £, (V, |Vn ) . Then A's private valuation does not influence I1’s payoff, except through A’s bid.

Equivalently, I works with the distribution of A’s bids, A (SIVn) .

We now proceed to implement the determination of optimal strategies outlined in the previous
paragraph. After the plaintiff’ and the defendant have submitted their secret bids, si; and s,, the asset goes

the higher bidder at damages determined by the lower bidder. Therefore, the plaintiff's and the defendant’s

3%We thus ignore the possibility of mixed strategies.
*"The inverses exist as long as Sy (VH ) and s , (V) are monotonic, and we shall assume that they are.
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respective payoffs, iy and m,, are given by

f Vi — Polsald, if ap = 64,

s sa Vi, Val — l D (s} if spp < s Likea)
; Diaal, if = = =4 : i

TalE,EaV VAl = { : W : ' RLY
alsn #é.l P Va — Daifsn), &0 < 5a. E ;

Taking into account the probabilities of private valuations, we can write down the expressions for the

expected payoffs:
"4l )
mnien Vi f dsa [Vi) — DulsailfalealVul + Palsul1 = FalsulW}],  (T1.5a}
Ll
£y s o
malsalVay = { dsp Voo Dalsm)fmisn|Vad | Bndsad|l Fraisa|Vall  (T1L3h)

]

Here, (s, |VH ) has the meaning of II’s expected payoff, giventhat his valuation is V' and his bid is sy;

and similarly for , (s, |VA ) . The players follow their optimal strategies, i.e., they maximize their individual

payoffs with respect to their individual bids. Thus, the bids obey the stationarity condition:

i

: d . ;
ol Vg = —walsa|Va) =0 L6}
dep A VI = gomalsalia, J

Inserting the explicit expressions for the expected payofts Egs. (II.5a) and (IL.5b) leads to the conditions:
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[Vials) = Dualsn)] 7 (sl = D'(sn)[l— ﬁA(sH|VH)] - Dy(sn) S (suli) = 0 (1.7a)

[V sa)- Dalsa)|7u(sal) + Disa ) 1= Fralsalvia)| - Dualsi) Fulsalpa )= 0. avzw)

which, upon rearrangement, may be written as the following set of conditions:

thts) = An(s|Va(s)i[Lm(s) = Dals) = ¥als]], {115z
D50 = Aals|bmi=[fnl=)  Patsl Vs, {11.%h)

the coefficients ;and , in the conditions being defined via

Ails|Va) = .;’Tll':-'*|1["'¢:',r;-| — Fafs(Vall, (T8}

AalsVn) = fals)ii) /1 — Fiyis[vim). {115}

In principle, conditions (I1.8c) and (I1.8d) should, for a given pair of damages functions Dy (s) and
D,(s), be solved for the (inverse) bidding strategy functions. This appears to be a formidable task, as the

equations are, in general, non-linear [the non-linearity coming from the dependence of X and X, on

V,(s) and V, (S)] . However, for reasons that we shall explain in section Il a less demanding route

is available and, in fact, appropriate.
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2. Continuous put rule

We now examine the continuous put rule. The only difference from the continuous call case is that

the damages are determined by the winning bid. Accordingly, we have the expected payoffs:

misn/Vi) = [Vio— Dlsm) Falen| Vi) + / deg Daisa) fatsalvi, (LL.9)
of .".n

~ R -~
Talsa Val = [Va o PalsailFhl=alVa) / darr Dl s Va (11.0k)
dsa

Vi)=(d/ds,) ,(s,|V,)=0. By

and, again, construct stationarity conditions: (d /ds,) (s

substituting the explicit expressions for the expected payofts, stationarity conditions can be written in the

following form:

Dy (s) B (su V) + [V (s0) = Dusi) = Dy ) [ (saV) = 0, (I1.10a)

V) + [V, (s) - Dy(s) - Dy (s)]fa (s, ) = 0 (IL.10b)

_D'(SA )FA;I (SA

We can recast this conditions into a form similar to that of Egs. (I1.8a) and (IL.8b),

L:'i—l{a'b = ,'.!.i':b|1"-|||\..‘.~'.\]_][|-'.|||:E;| = i:'||lib';| - l}y_\,fa'_'b], [.ll..lla,?]
(s} (s Vale)i[Valsi — Didsl — Dats]], {TL11h)
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where we have introduced

¢
)

Jnls va) /Fals val, (11.11c)

iVl

ualsbin) = Fa .}51-%.}_,-"?1 (s|¥1l. {1111d)

D. Recovering the discrete rules

We have seen that when the asset-allocation decision is delegated to the litigants the economic
efficiency of the allocation is increased by a suitable choice of the damages in a vanilla call or put regime.
Work on exotic liability rules has been sparked by the sense that efficiency would be further increased if
the litigants were to have the greater freedom offered by iterated call or put regimes, and the court were
to have at its disposal the correspondingly greater number of adjustable damages parameters — infinitely
many in the continuous call and put cases.

Let us put these arguments on a firmer basis. It has been argued that the vanilla call is, in general,
more efficient than the property rule, as the property rule can be thought of as vanilla call with damages D
set to infinity. Barring the exceptional possibility that the total efficiency is
independent of D, a liability call rule can always be made more efficient than a property rule by a better
choice of D. As we shall now explain, the continuous call rule is more efficient than the iterated call,
provided that the iterated call can be shown to follow from the continuous version with appropriately
chosen parameters. This is indeed possible if the damages curve ofthe continuous version is chosen to have

a zigzag shape, as shown in figure 2.
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[Mg. 2.— A continucus rule bidding curve that simulates & J-stage iterated call rule.

With this zigzag shaped damages curve, the plaintiff should only bid at corners at which the zigzag
curve turns right, and the defendant should only bid at corners where the curve turns left (or at the point

at the origin, or infinitely far away). To be precise, we will show that if one of the players would use the
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strategies from this subgame (i.e. bidding only in corners), the other player gains no advantage by deviating
from the subgame, i.e. by bidding away from corners. Indeed, if the defendant decides to place a bid
somewhere on a horizontal segment, he would simply increase the amount of damages he receives if he
loses by moving his bid point to the right. If he decides to bid somewhere on a vertical segment, he is
indifferent where to place his bid, but it is safer to move down, thereby decreasing the damages he might
have to pay (without changing the damages he might receive), should the plaintiff decide to play away from
corner. This shows the sought reduction from the continuous call to the discrete iterated call. Similar
reasoning can be used to relate the continuous put and the discrete iterated put rules. We refer the reader
to the A for a table of damage functions used to simulate each of the liability rules described in the

Introduction.

E. Connections with auctions

The procedure we have described in this chapter has much in common with familiar auctions. In
the case of auctions, the relative of our iterated call is the increasing price, or English, auction. The iterated
put, in turn, corresponds to the decreasing price, or Dutch, auction. Arguments similar to the ones we have
made (in going from the infinitesimal bid increments to “sealed envelope” bidding) led Vickrey*® to propose
replacing English auctions with the so-called Vickrey, or second-best, auction, and to replace the Dutch
auction with the first-best auction. In both Vickrey and first-best auctions, the bidders secretly submit their
bids. The highest bid becomes the winner at the price determined by the second-highest (Vickrey) or the

highest (first-best bid. The analogy ends here, because in our formulation, the damages paid, do not, in

3BWilliam Vickrey, Counterspeculation, Auctions and Competitive Sealed Tenders, 16 J. Finance 8 (1961).
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general, correspond to the real bids. The importance of the Vickrey auction is in that the bidders bid
according to their private valuations, whereas in first-best auctions, they tend to strategically underbid. In
contrast, in our scheme, the bid amounts under the iterated put rule reflects strategic underbidding, whilst

strategic overbidding features under the iterated call rule.

II1. Designing Optimal Mechanism
A. Formulation
The task of designing an optimal mechanism can be split into two parts. The first part involves
finding optimal bidding strategies given a set of damage parameters. The second part involves maximizing
total expected efficiency by adjusting these parameters. For the continuous call or put rules the strategy is
synonymous with submitting a bid, and the set of parameters corresponds to the damages functions

D, (s) and D, (s) . The problem of determining the optimal bid, given D_ (s) and D, (s) , was

addressed and solved (at least formally) in the previous section. Approaching the second part of the
problem (i.e. the maximization of total expected utility), we note that for the first-best allocation (i.e. a
mechanism whereby the party with the higher private valuation always gains control of the asset ~ the total
expected efficiency achieves its optimal value. As we shall now see, a model in which the set of parameters
corresponds to the pair ofcontinuous functions is sufficiently rich to achieve first-best allocational efficiency.

Any other mechanism will be, at best, only as efficient, not more so.

Under both the continuous call and the continuous put rules, the asset is allocated to the party with
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the higher bid, i.e. to the plaintiff if 5, > s, so and to the defendant if s, < s, .On the other hand, for
optimal allocation we must have that the asset is allocated to the plaintiff if ¥, (s,,) > V, (s,) and to the
defendant if V, (s, ) < V, (s, ). A moment's reflection will show that these conditions are compatible if
and only if V', (s) =V, (s) . On the other hand, we observed that the game is invariant® with respect to

the reparametrizationof D, (s) and D, () via any monotonically increasing function#(s). Assuming that

there exists a mechanism [i.e. functions Dy, (s)and D, (S)] thatguarantee J, (s) = V, () , bychoosing

t=V,(s)=V, (s)as the new parameter, the mechanism can be reformulated via D, (¢) and
D, (t)sothat V, (£)=V () =¢.
We now substitute }, (s) = sand V, (s) = s into the equations Egs. (I1.8a) and (IL.8b) of

section C for the optimal bids so that D, (s)and D, () are viewed as the unknowns rather than

parameters:
Call Put
Di(s)= (Vs = $)[Dy(s) = D, (s)- 5] Di(s)= (s, = 9)s- D,(s)- D,(s)]
Di(s)= (Vs = 9| Dy () + D, (5) - 5] Di(s)= (s, = )s- Dy (s)- D, (5)]

Table 2: Differential equations for damages functions.

3To be precise, the term covariant should be used, as the calculated bids should be adjusted according to
the reparametrization.
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Litigants, furnished with D, (i), D, . that solve these equations, would apply the rationale of section C,

and inso doing would discover that their optimal strategies are J, (s) = V, (s) = s . Therefore, in making

their bids, they would be forced to reveal their private valuations. By virtue of the fact that the asset is
allocated to the higher bidder, first-best allocational efficiency is realized.

A special note should be made about the boundary conditions obeyed by the damages functions. To ensure
that the equations of Table 2 have non-singular solutions, the following conditions must

be met*’:

Call | Put

DH (Smax) + DA (Smax) =S DH (Smin) + DA (Smin) = Smin

max ‘

Table 3: Boundary conditions for damages functions.

We now address the task of actually solving for the damages functions, giventhe optimal strategies

V. (s)=V,(s) = s.To do this, we first introduce the auxiliary function D(s)= D, (s)+ D, (s).

As seen by adding together the differentialequations of Table 2, B(S) obeys a certain ordinary differential

equation, depending on whether we are considering the continuous call rule or the continuous put rule:

Call Put

“We introduce the following notation: s

max

is the smallest s such that f(tn 5 l‘A ) = 0 forall

fH,ZA > S ; similarly, s, the largests suchthatf\(lLH ,fA) = 0 forall tl‘[’tA <S.
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D'(s)= ()[D(s)- s] D'(s)= (s)s- D(s)]

D(s,.)=s.. D(s,,) = s,

mn

Table 4: Equations for D(s) together with boundary conditions.
where ()= (W, =5+ (I, =5)and (s)= (s, =s5)= ,(|V, =s; the
quantities |, ,, ,, ,havebeendefinednsectionC. The stated boundary conditions on D follow

from those given above for D, (s) and D, (5) . Note that, owing to the linear, first-order form of the

equation obeyed by l~), the method of integrating factors presents us with an explicit solution in terms of

the functons (s) or (), which encode information about the joint probability distribution

f(V,,V,). Note that this distribution may be arbitrarily correlated.

Armed withthe solutionfor D(ss) , we mayreturn toone orother of the differential equations, for D, (s)
orfor D, (s) , eliminate the sum D (is) = D, (s5) on the right hand side in favor of D(s) ,and integrate
to obtain D, (s) and D, () .

Note, that D, (s) and D, (s) are determined only up to a single constant of integration, as they
should be. If a pair { Dp(s), Dy (S)} is a solution, then so is the pair {DH (s)+ A,D\(s)- A} :

As in Ayres & Goldbart (20xx) it is possible for courts to decouple distributional and allocative
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concerns in that there is a family of allocatively equivalent damage curves that vary how the total expected
value is divided between the plaintiff and defendant. In what follows, this constant of integration can be
thought of as a free variable that a lawmaker can set to independently pursue equitable goals or to enhance

ex ante investment incentives.

B. Examples
In this section we shall consider some elementary but, we hope, instructive examples involving the

continuous call and continuous put rules. We shall take the joint probability distribution density to be
constant (i.e. uniform distribution) throughout some geometrical region in the (VIT V. ) plane. We remind

the reader that a rectangular region having sides parallel to the coordinate axes corresponds to an example

of uncorrelated distribution*', whereas an arbitrary shape implies correlations.

Uniform distributions lead to particularly simple expressions for the functions ;(s) and 4 (),

as we shall now see. We refer to figure 3 for further discussion of'this fact. There, the point S corresponds

to Vg = V), = 5. Points, where the edge of the area is intersected by the upward and rightward rays

drawn from S are labeled U and R, respectively. Then the functions (s) = f (s,5) / [ SOO f(s,t)dt

assume the following simple forms: ;(s) =1/ |S R|and As)=1/ |S U|, where | AB| denotes the

“ndeed, for the rectangular region f(VH,VA) =f, (Vn )fA (VA) ,with £, (Vn) =1/ (Vr}““ -y ) for
V. e[VH“““ ;Vn""“] and fA(VA) =1/ (VA‘““ - VA"““) for V, [VA‘“‘" ;VA"““] , s constant everywhere in the rectangle having

corners (Vn“““ o ),( yom ),( | i ), ( |5 VA‘“‘“) and 0 elsewhere.
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distance between points 4 and B. Similarly, for the functions (S) and , (S) that appear in the
continuous put case, we obtain (see figure 4): H(S) =1/|SL| and A(S) = 1/|SB|. We now use

these results to compute damages functions in various example settings.

1 Vfi V. Vl Lisg

Fig. 4.— Determining An(s) and Asis) for
a unilorm dizlribaion,
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Vi

Fig. 4. — Determining jqp{a) and pis (=) for
a unilvrin disteibalion,
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Let us take the joint probability distribution to be uniform in the rectangle

Vg € [Vrrlnin; | ], V, e [VAmin; VAmaX]. For this case, we have (s) = 1/(Vﬁnax - S) and
A(S) =1/ (VAmaX - S) . For the sake of concreteness, let us further assume that Vi > V3 . In

this case, the boundary condition (see sectionA) is enforced at s, . = VAmaX. To solve for E(S) , We

multiply the equation it obeys by the integrating factor (Vnmax - S)(VAm s ) , thus obtaining:
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(Vﬁ“ax - S)(VAmax - S)ZN)'(S) = ( = Y- 23)(5(5) - S) (IIL.1)
Then, transferring the term proportional to E(S ) to the left hand side and integrating gives:

(Vﬁmx - 2)(VAImlX - S)ﬁ(s) =

W | N

s° - %(Vﬁ“’”‘)sz + K, (I11.2)

where the constant of integration K is fixed by the boundary condition that B(S) remain finite at

s = V™. Atthat value of s, both sides of the equation must vanish. Straightforward algebra then yields

the following expression for l~)(s) :

(V max VAmaX ) 2

I —
Vnmax -5

1 (II.3)
. .

which we remind the reader holds for the V7™ > V™ case of the uniform rectangular distribution.

Inserting this solution for lN)(S) into the equation obeyed by Dy, (S) gives:

2
1 1 pmex _pmax pmax _ j, max
Dll"[(S) = g_ g ;H max _AS a g ( (l;l_tlnax B 2)2 ) > (II1.4)

which may be straightforwardly integrated. Thus, one obtains DH(S) and, using the relation
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where A is the constant of integration. The resulting damages curve is shown in figure 6:
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Fiz. 6.— Damages obtainad by considering the distribution uniform in a rectangle [0;2] = [0;1].

Left: amages curve m the U — Da pane. Hight: Actual damages functons D(s) and Dy (s).
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The strategy just used also provides damages curves for the case V7 < V™, inwhich case we obtain

1

: 2 P —— 1V ypas? )
Duig) — ot gV -V VR o) — g =fpme 5+ (lL6a)
D;\‘ |‘s] — %.n' — é{[}:ldﬁt _ 3 '|'|;I[I||;u;1.:I ]1![ 1'_3:1«;... - -'i_:l _|_ %{] Elél.n.'t + -L,-Ir|||a;t:| e "*"-. [”lf'“:ll

as well as for the case Vpj =V, for which we obtain

! 1 CIThAX 1 3 L
thpals) = El- + E-ﬁifl. (L11.7)

We note that especially simple damage curves (i.e.theyobey Dy — D, = const ) result for symmetrical

problems, by which we mean settings for which H(S) = A(S) [or, in the put-rule case,

I (S) = 4 ( S) ]. These situations commonly arise for probability distributions that are symmetric with
respect to the interchange of players: f° (VH VA ) = f (VA , VH) . Also note that setting

Vljlnin - VAmin =0 and V5™ = V™ =1, would correspond to .

the special case addressed by Ayres and Balkin.**

#See supra note 6.
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2. Uncorrelated uniform distribution: continuous put rule

Let us consider the same geometry as we did in the previous example, i.e., a uniform rectangular

distribution. Now, however, for the sake of concreteness, let us assume that Vl-lln < VAmm, in which case

the appropriate boundary condition is enforced at s, ; = VAm n Again we multiply the equation of Table

4 by a suitable integrating factor, thus obtaining

(e R5TN L WY B ) — (D PRy B (TR

Integrating and applying the boundary condition gives

Ty 1 SER | pomning -_t . l‘:l"gliu - FFFI-HLF .
.[”:ti,' = f; |_‘i N - [n __I + 30 + {i e T,-".Ifr"’m ‘I]I"-b.l
Then, substituting this result into the equation for 1D A(s) gives
; \2
R U IR | | 76 i)
Dl s) = : —g— — lel’l_l_ me [ - III.IO
A(s) s— pmin | 3 6(A ) 6 s-pmn (11L.10)

and integrating and using DH( s)= D(s)- D A (is) gives the damages functions:
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Dy(s) = %+ %(VArnin — V) (s - V) 4 %(VA“““ + V) 44, (IIL1la)
S P A
D,(s) = 35° E(VAH““ - V]-Iflm)ln(s— Vl-rln”)Jr 6 o_pmn T A, (IL.11b)
I1

where A is the constant of integration. These particular results hold for the V' < VAmin case of the
uniform rectangular distribution. Similar results can readily be obtained for the cases Vﬁn i _ VAmin

min min
and Vi >V, .

d. A simple correlated distribution: continuous call rule
The purpose ofthe present exercise is to exhibit an example in which the valuations are correlated

but, nevertheless, the damages curve may be explicitly obtained.
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Fig. 7.— Uniform diatribution in a rriangle.

Here we take the joint probability distribution to be uniform in the equilateral triangle with corners

(0,0),(Vnmax,0) and (0, VAmaX). Alternatively, we view this region as the first quadrant
(Vi > 0,7, > 0) boundedbythetine (¥, /7™ ) + (7, /V7) = 1 Theinereconwihtrelie V7, =

determines s, . = V= Zoun S / (Vnmax + VAmaX). For this distribution it is straightforward to

42



showthat 17(s) = ()Vm /(= 4y Y and (s) = ()1 /(4 1), where

(S) = l/ (T7 - S) . Consequently, the equation of Table 4 for E(S) takes on the simple form

~ 5 S)— 8
D'(s) = %, (IIL12)

which can immediately be rewritten as

d o - -
(Vo= =) M) — -5 IAE)
dE -I'\. q} {q} l-" L8 il

and hence integrated to give, upon applying the boundary condition 5(17) = 17,, the result

D) = (V 4+ a)/2, (TIL.11)

Substituting this result into the differential equation for Dy (S) gives

VIR Va2 1 I

TTIRX _ fULUBX o : _ _} Fmax _ prmex
LY Vi K- 2V Vi

Lipis) = (HL15)

Integrating and using D, (s)= D(s)- Dy (s) then gives the damages finctions
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1 'i_.-'ﬁ.l an

.Ir.l"n I:_F_l = g WF‘ + 4, IZIT].-”_;H!
o | 'L,'Elrrm.x . _ -
Dale) = Spma ZpmaetV -4 (1LL16b)

where A is, again, the constant of integration; these results can be expressed in the more symmetrical form

Vmax Vmax =9
Dy (s) = Hz ijx —+ A, (II1.17a)
n =7A

VmaX VmaX +
D,(s)= 2 > (IIL.17b)
2 Ve

4. Uniform triangular distribution: continuous put rule
This example turns out to be the least interesting of the four we have chosen. As long as the lower

left corner of the region in which the distribution is nonzero has the form of the rectangle, the expressions

for (S) and ( S) are the same as for the rectangle (with Vl-lln in _ VAmjn = ( inthis example). Hence,

the damages functions are identical to those found for the rectangle. To rephrase this more sharply, the
damages functions do not depend on any probability weight that lies outside

(for

min

thebox ¥y < S0 Va < Sy (for the continuous put rule, or the box Vi > 5,0,V > s
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the continuous call rule).

For completeness of the solution we do need to specify the damages for s > s™* . In fact the

appropriate choice is to set DH(S) = Dy (Smax), DA(S) = DA(SmaX) for s > ™.

5. General solution: continuous call rule
In this section we shall derive explicit formulas for the damages functions which can be used for

arbitrary distributions of valuations, correlated or otherwise. As we did for the examples, we first solve for

5(S ) , which can be seen from the equations in Table 4 to obey the differential equation
D8] A& [Ts) — & LS

together with the boundary condition E(Smax) = Sax- As the differential equation is a first-order

m

ordinary one, we use the method of integrating factors, by which we find that

dr~
- D(S)ej s max (M)du] —_g (S)@J. smax (u)du

7 s = s , (IIL.19)

and hence that
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E(S)ef;smax (u)du - K+ j ;maxdtt (t)ej'smax (u)du (I11.20)

1 b

where K is the constant of integration.

Next, we determine K by applying the boundary condition. To do this, we consider the limit

S = 8. » bearing in mind that (S) is singular in this limit. By making use of the elementary
identity®
H‘I['f‘max Mwhdu 3 f-—mxn o ‘:Hﬂ F:Jp‘amn A , T2

and observing that, in the imit s — s we may replace ¢ on the right hand side of the solution for

max >
E(S) by S;ax » We recognize that the boundary condition is satisfied if K = 0. Thus, we arrive at the

solution

x5 “Arnak
Day - f el 1 2ty o= 02 Al (L.27)

a

To complete our task, we insert the formula for D(s) into the differential equation obeyed by D (S) [we

could equally well have used D, (S)]to obtain

“Sman
Lip{sh = A fs f dt [t = s1A(t] e s A0 (1L 23)

w

$0btained by observing the the r.h.s. is the integral of a total derivative.
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where (S) 1s given in section A; integrating yields the result:

Lok 4 f dt dlt) [ R [# — £)A () o S Mudn T2
S

* Fmin

As we now know [)s)and Dy (s), it is straightforward to construct D A (s), using
DH( S) + D, (S) = 5(5) . Asmentioned at the start of this section, these damages formulas can be used

for any joint probability distributions of valuations, the latter featuring through the quantities (S) and

A (S) ; see section A.

6. General solution: continuous put rule

We devote this section to deriving the general solution for the continuous put rule. As only slight
modifications of'the formalism for the continuous put rule are needed, the explanations will be brief. As we

know from Table 4, the combined damages bb(s) satisfy
DY(s3 — pis)s = D{s}], cL23)
together with the boundary conditions by the method of integrating factors yields the following result:

D(s)=[* dt ¢ (£)e o (II1..26)

s min

Closer examination reveals that this formalso satisfies the boundary condition at s — s, . Inserting the
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result into the differential equation for Dy (S) from Table 2 and integrating, we obtain:

t

t
Dyls)= A+]5 .dt (D] di(e=¢) () (111.27)

smin

The defendant's damages D, (s) are obtained using D, (s)= D(s)- Dy (s) .

IV. Game theoretic formulation

In passing to the continuum limit of the iterated call and put rules, we have designed the damages

functions in sucha way that the plaintiff'sand defendant's optimalstrategies become V7 (s5)= Vy (s)=s,

i.e., each reveals his private information. The idea that incentive problems can be efficiently solved by
designing a mechanism under which rational participants reveal their private information truthfully has
become known as the revelation principle and was originally formulated by J. Mirrlees*. As we now
discuss, one can use the revelation principle to construct a general formulation of the problem of efficient
asset allocation in the context of liability rules.

We present a view of liability rules as games between the plaintiff and the defendant played
according to rules stipulated by the court. Each player makes a move (for instance, announces a number
that identifies one of his possible strategies), accounting for his private valuation and the common

information at his disposal. The players move at the same time, and the court chooses the final asset holder

*James Mirrlees, An Exploration in the Theory of Optimal Income Taxation, REV. ECON. STUD. (1971), 15 J.
Legal Stud. 93 (1986).
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and the damages exchanged (e.g. by looking them up in a table having rows and columns corresponding
to the plaintiff's and defendant's moves). In this strategic form, the players, who have full knowledge ofthe
payoft table, solve the problem of finding their optimal strategies, and make their moves accordingly.
However, they could equivalently delegate their decision-making to the court by revealing their private
valuation, provided they are assured that the court will use reasoning identical to theirs and will make the
corresponding moves on their behalf. It must be stressed that in making a decision on the plaintiff's behalf
the court should pretend that it does not know the defendant's private valuation, and vice versa, in order
to correctly mimic the litigants' behavior. The next step consists of combining the two steps—finding the
optimal moves and determining the winner (who will become the owner of the asset) and the
damages—into one. The court asks the litigants to submit their private information and uses these valuations
to determine who is to be the asset holder and the damages. The added requirement is that the mechanism
be incentive compatible® —the litigants must not be able to gain any advantage by misrepresenting their
private information.

With this scheme in mind, if we are aiming at achieving the perfect efficiency, the court should

allocate the asset to the party with the higher private valuation. Ifthe announced valuations are sy and s, ,

then the asset should go to the plaintiff if s, > s, and to the defendant if sy < s, (or to either party if

St = Sa ). Furthermore, the court sets the damages at D( ST, S A) ; the function D has to be crafted in an

incentive-compatible way. Note that the function D(SH ) A) will, in general, be discontinuous across

See, e.g., infra note 36.
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Srp = 8. Itwill, therefore, be convenient to work with two functions, DH(SH ,SA ) and Dy (SH , SA ) ,

defined only for s 2 s, and s < §,, respectively.
IT A IT A

To find the necessary restrictions placed on DH(SH ,S A) and D, (SH ,S A) , let us assume that
the players have the private valuations J;and V, , and that their optimal strategies Sy (VH) and

SA (VA) are notnecessarily revealing. (Theyare revealingif Sy (VH ) = Vjand s, (VA ) =V, .)Weshall

then enforce the condition that if any one's strategy is revealing, the opponent's best response is to follow
a revealing strategy. In other words, we shall seek damages functions such that this scenario is always

realized.

As usual, we choose I(VH,VA) to denote the joint probability distribution governing the
valuations. For convenience, we use the Heaviside function o(x) a5 a tool for restricting the regions of
integration. For instance, we would multiply the integrand by G(VH - VA)to restrict the region of

integration to the half-plane V; > V', We also make use of 6 ’s formal derivative (known as the Dirac -
function) o'(x)= (x). The Ilatter has a meaning only inside an integral, so

that| dx (x-a)f(x)= f(a) . We regard the litigants' expected payoffs, gand |, as entities

*The Heaviside function may be defined via 9( _x)

1l
——
oi—‘
= =
A Y
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that depend on the strategy functions s (VH) and s, (VA) %7 In the present context, inwhichthe asset

goes to the higher bidder, the expected payoff functionals are given by

A=) sal-] j /\l“;”i“';l TV Va) {8 {en — sa )M — Dntsn, al]

| flea sn)Palsm sall (TV.1)
malenle), sall] = ! / dVindVa [V, Va) {0(an — sa )y (5. 0a)
+0{za — 1) [Va — Palan, eall}. (V.23

The restriction on the damages, which we are seeking, is chosen so that the revealing strategies

ST (VH) =V and s, (VA ) =V, makethe litigants' expected payoffstationary withrespect to variations

in strategy:

)

= WA ), saln)] = 0. 1V .3)
Asa(Va) a s, sal)] ! J

comulEn o salc)]
as k)

Note that we are using functional derivatives,*® rather than conventional ones. Functional derivatives

can be thought of as partial derivatives in a multidimensional space of infinitely many variables [i.e.

Mt is customary to refer to entities that depend on functions, rather than, say, variables, as finctionals of
those functions.

*See, e.g., C. Nash, Relativistic Quantum Fields (Academic Press, London, 1978).
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sy = S(Vl),sz = S(V2 ),. .., where V,V, ,...enumerate all real values]. In the simple case in which
[S( V)] is expressible in the form
wls(-1] = / dV oplsi Vb VL)

the functional derivative turns out to be computable via*’ :

s()] dp
s(V) — ds

(1) (IV.5)

The stationarity conditions Eq. (IV.3) are, indeed, expressible in this form.

Intuitively, the condition [ >/ s (Vn) = (s solved by first fixing }’;; and then optimizing

the payoff by adjusting s, . The procedure, repeated for all }', yields the function equation

0= JdVAf(VH,VA ){Q(SH — Sp )DI(TH)(SH,SA) - Q(SA - S )Dgn)(sH,SA)

+ (SH - SA)[VA - DH(SH,SA)— DA(SH,SA)] }, (IV.6a)

(1) . : o . L
where D (SH ,S A) is used to denote the partial derivative D(SH ,S A) /S . Similarly, optimizing

the defendant's payoff we obtain

*Note that the functional derivative of a scalar is itself a function (of V).
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0= Janf(VH,VA){Q(SH - SA)Dl(—IA)(SH,SA)— Q(SA - SH)DgA)(SH,SA)
+ (SH - SA)[VA - DI—I(SH,SA)— DA(SH,SA) ] } (IV.6b)

where D' (SH ,S A) denotes the partial derivative D( ST15SA ) /' Sx. The next step is to determine

the constraints on D and D), imposed by the demand that revealing strategies are an equilibrium. Thus,

we insert sy (V1) = Viyand s,(V )= ¥ into Eqs. (IV.6a) and (IV.6b), arriving at the conditions

j dVa J(VIL Val{ — 80V — Va) D' i¥in. Va) + 6(Va - Y DL (Vin. Va) |

— F(Var, Vi) { Vin = Pn(Vir: Vin) = D (Vin Vi }. (1V.7a)
[ v fvn Var{ovn VainMovinVay #iva VP, Va) }
fVa.Val{Va  DniVa,Va) DalVa.Val}. (IV.7k)

Recall that section I1I was devoted to determining the conditions obeyed by the damages functions
for the continuous call and continuous put rules. We can recover these conditions from the more general
structure, just developed. To see this, recall that, under the continuous call rule, the damages were

determined by the losing bid. In the present language, this reads

Onidm. Va) — PnlVal, (TV.Ra)

Dx(Vn,Va) = Da(Vn). IV AL
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Hence, not only do D(H) = D(A) = (, but also D(A) and D(H) can be taken out of the integrations
y o A 1 A

in Egs. (IV.7a) and (IV.7b), which then become

0 — (V) f AVa SV, Vad0(Va — Vi) — SV, V) Vi — DoV — DatVind].

" (1Y 9a)
it PETARN /di"u FO Va)i (Vi — Va) + f{Va, VallVa — Pa(Va) — Pa(Vall.

' (IV .40}

i.e., precisely the conditions on Dy (VA) and D, (VH ) obtained in section III. Similarly, for the case
of the continuous put rule, by setting DH(VH VA ) = Dy (VH) and D, (VH VA ) = D, (VA )we

recover precisely the conditions on DH(VH) and D, (VA) obtained in section IIl. To conclude this

section, let us make a few remarks about the validity of these results. We have proven the stationarity of
the revealing strategies but have not demonstrated that they constitute maxima of the expected payoffs.
Thus, the conditions we have found are necessary, but not (necessarily) sufficient for the existence of the

revealing Nash equilibrium. In B, we shall prove that these conditions are also sufficient for the uncorrelated

case: f (VH VA ) = fu (VH ) fa (VA ) . The uniqueness of the Nash equilibrium remains anopen problem

even for the uncorrelated case.
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V. Conclusion
In this Paper we have proposed two new types of liability rule ~the continuous call and the

continuous put. In contrast to traditional liability rules, which depend on a single damage parameter D, the

continuous rules are specified by the functions Dy (S) and D, (S) These rules can be thought of as the

infinite-stage limit of the iterated call and iterated put rule or, equivalently, as an entirely new procedure,
akin to the Vickrey and first-best auctions. We have shown that these rules are rich, in the sense that (a)

all rules encountered, to date, can be expressed as special cases of either the continuous call or the

continuous put rule, and (b) by appropriately choosing DH(S) and DA(S), it is possible to design a

mechanism capable of achieving the first-best efficiency, assuming that the plaintiff and the defendant are

both rational players. We have also reformulated the problem using the revelation principle, and have
obtained the conditions satisfied by the damages function D(VH VA ) , we have also shown how the

continuous call and put rules manifest themselves as two special cases of this most general mechanism.
The striking similarities between our results for the continuous call and continuous put rules can be

explained as a manifestation of the duality of these two mechanisms. Indeed, if we assume the existence

of an upper bound on private valuations, i.e., the price M such that, with probability 1, both

Vit,Va £ M [That Vi,V < Ois implicit.] To each asset, we may assign the corresponding liability a

contract to acquire the asset for the amount M. For bilateral disputes, the right to be free from such liability
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represents the asset dual to the original one.* It can be argued that the outcome of the continuous call rule
is equivalent to the outcome of the continuous put for dual assets, and the outcome of the continuous put
rule for the original assets is the same at that of the continuous call for the dual assets. Thus, one might say
that the distinction between the two is only superficial. It remains to be seen whether any of the more
general damages functions that satisfy the efficiency conditions of section IV correspond to rules of any
practical value.

A famous (negative) result, due to Myerson and Satterthwaite®' states that it is impossible to have
an efficient trading mechanism. To be precise, whenever domains of non-zero probability overlap, no
mechanismis possible that is both (a) individually rational [for players to participate in the procedure] and
(b) first-best efficient. Work by Chatterjee and Samuelson®* relaxes the second constraint in order to solve
the problem for the case ofa distribution that is uniformin the unit [0; 1] x[0; 1] square. The present Paper

relaxes the first constraint.™

While courts can assure that the disputants’ expected payoffs (given the
court's knowledge of the general value probability distributions) are positive, the payoffs of privately

informed playoffs can be negative. But this potential participation problem is equally acute for traditional

9This feature is reminiscent of the call-put parity result for vanilla liability rule. See supra note 7 and supra
note 10.

SIR.B. Myerson and M.A. Satterhwaite, Efficient Mechanisms for Bilateral Trading, J. Of Econ. Theory 29,
265 (1983).

S2K. Chatterjee and W. Samuelson, Bargaining under Incomplete Information, 31 Oper. Research 835, 837-
38 (1983).

33peter Cramton, Robert Gibbons, and Paul Klemperer, in Dissolving a Partnership Efficiently [Econometrica
55, 615 (1987)], formulate a set of conditions under which a partnership (i.e. three or more players dividing two or
more assets) can efficiently be dissolved. They restrict their attention to symmetric, uncorrelated distributions, and
formulate additional constraints on the distributions that make efficient allocation possible.
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liability rules.>*

Thus, in future work, it would be useful to analyze the extent to which a participation constraint
limits the analysis. For now, it is at least clear that litigation often extinguishes the participation choice of one
disputant. Defendants, by polluting (or by seeking a declaratory), can often force plaintiff participation in
the mechanism. And plaintiffs, by suing, might often force defendant participation. The possible need to
assure the participation of only one relevant disputant might mean that it may be appropriate for courts to
divide the total payoffs (through its setting of A) in a way that assures that the appropriate range of disputes
is subjected to the continuous call or continuous put mechanism.

Appendix: Demonstration of Nash equilibrium for the uncorrelated case
The purpose of this appendix is to show that, provided that the distribution of valuations is uncorrelated,
and provided that the damages functions obey the conditions givenin Egs. (IV.7a) and (IV.7b), the strategy
in which both players reveal their private information is a Nash equilibrium. To see this, consider the

equations obeyed by the damages functions for the uncorrelated case:

>Saul Levmore, Unifying Remedies: Property Rules, Liability Rules, and Startling Rules, 106 Yale L.J. 2149
(1997).

57



Plaanlall

DheCendanl

Vanilla
1
Il (2]
\ L1
n'ﬁ m
T A Il

Liability rules: Call type
Dbl

[terated

58




0= [ dVa falVa)d @V Val DYV Val 180V Vi DADIW Vi)

+ Fa Vi Vi = D (Vi Vb — Dia Vi vl (51}
(= f ¥ fuivin) ']rf"'f Vig— Vad IV Fa) — 8(Va — W) D500, ba \]r
falVal Vs PoVa,Va) DaVaVall (B2

Assume that the plaintiff's valuationis V'}; . The plaintiff's payoff from making the bid sy can, provided that

the defendant uses the revealing strategy s, = V, , be expressed as

ry

apfer Yn) = / dVa falVa i {ian — Val[Vim — Dpiem. Va)] = #(Va — sp) Dalen, Val b (B3)

Now, we can safely assume that ST is such that Jn (S H) >0 >° Then, by differentiating the plaintiff's

payoff g [SH |VH ] with respect to s , and comparing the result with Eq. (IV.7a) for damages (having

substituted v; = s in the latter), we can see that

aulsu|¥i] = Fatlsud (Vi — =0, (134)

!.!:a'l 1

>For instance, the court can assess a huge fine [setting DH(SH »VA ) = 40 or DA (SH VA ) = -0 ]

on a player (plaintiff) who reports an impossible private valuation.
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ie,d /dsy>O0whensy < Vyandd [ /dsy < Owhensy > V. This provesthats, = Vi is
the plaintiff's best response . This analysis, applied to the defendant's payoff, shows that s, = V' is the

defendant's best response, provided the plaintiff uses the revealing strategy. Therefore, the revealing

strategies do, indeed, form a Nash equilibrium.
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